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LETTER TO THE EDITOR 

Critical exponents for the four-state Potts model 

I G Enting 
Physics Department, King’s College, Strand, London WC2R 2LS, UK 

Received 13 February 1975 

Abstract. We obtain a number of relations connecting the critical exponents of the Ashkin- 
Teller model. For the special case of the four-state Potts model these relations predict 
a = $, fi  = A, 7 = 2, 6 = 15. Series estimates are in agreement with these predictions. 

Although it is over thirty years since the Ashkin-Teller model was first described (Ashkin 
and Teller 1943) it is only recently that very much has been learnt of its properties. 
The model can be regarded as consisting of a regular lattice with two Ising spins ai, 
S i  = +1 on each site, and having the Hamiltonian 

H =  - 1 ( J  Qidj + J ’ S i S j  + J,aiajSiSj). 
bonds 

In the general case Wu and Lin (1974) have shown that two phase transitions are expected, 
but for the present we consider only J’ = J ,  J ,  < J so that only one transition is expected. 

Since we have two Ising subsystems coupled by a four-spin interaction the model 
is similar to the eight-vertex model and so, as explained by Kadanoff and Wegner (1971), 
the critical exponents should vary continuously with J , / J .  A special case of the Ashkin- 
Teller model is J = J ’  = J , ,  which is equivalent to .the four-state Potts model (Potts 
1952). It has been shown (Baxter 1973) that the transition is continuous. 

In the eight-vertex and Ashkin-Teller models there are two natural order parameters, 
generally called the magnetization M and the polarization P .  

For the Ashkin-Teller model 

P = (aisi) 
M = (ai) = (Si). 

The critical behaviour of P and M is described by the exponents p,, p,,, respectively, 
and we can conjecture two sets of critical exponents with the usual scaling laws applying 
to each set. For instance. 

a’+p,(l +6,) = 2 

E’ + p,( 1 + 6,) = 2.  
(4) 

(5) 

In the eight-vertex model (4) has been confirmed by the work of Baxter and Kelland 
(1974) and ( 5 )  by the work of Gaunt (1974). In addition to these scaling relations we 
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conjecture that the following two relations apply to the Ashkin-Teller models : 

While there have been discussions of the significance of fixed 6, in three dimensions 
(Gunton and Buckingham 1968, Brout 1971), the significance of 6, = 15 in two dimen- 
sions remains rather poorly understood, but the relation has been confirmed by series 
analysis for J , / J  = 0 and 1. Relation (7) appears to be a similar type of relation, lying 
outside scaling and yet it applies to the eight-vertex model (Baxter 1974) and to the 
triangular lattice triplet model with pure three-spin interactions (Baxter er al 1975). 
Perturbation calculations show that both (6) and (7) should apply to the Ashkin-Teller 
model on all two-dimensional lattices, at least to first order in J 4 , J .  

For the Ashkin-Teller model with J ,  = J = J' we make the transformation 

0, --t aisi si + si 
which leaves (1) unchanged and interchanges M and P. We thus have 

B m  = B e  ( J 4  = J ) .  (8) 

Solving ( 5 ) ,  (6) ,  (7) and (8) gives 

r '  = r 
3 

p = p  e m =l, 1 2  

Assuming the scaling laws gives 

These are the same exponents as for the triplet model. 
It should be noted that these predictions are independent of which two-dimensional 

lattice is considered. This is somewhat surprising as in general if J' = J the manner 
in which the exponents depend on J 4  is lattice-dependent. In particular 

where q is the coordination number of the lattice and A is the specific heat amplitude 
(at J ,  = 0). It appears that only at points of special symmetry, J 4 / J  = 0 or 1, are the 
exponents lattice-independent. 

The predictions (9) to (12) disagree with the conjecture of Ditzian (1972) that the 
eight-vertex and square lattice Ashkin-Teller models should have the same exponents 
for the same values of J 4 / J .  

The predictions (9) and (10) have been tested by analysis of low-temperature series. 
The notation used follows Enting (1974a). Expansions for the zero-field partition 
function are known through to u16 for the square lattice (Kihara er a1 1954). The full 
field dependence of square lattice terms through to u13 is given by Straley and Fisher 
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(1973). Series expansions for the triangular lattice have been calculated using the con- 
figurational data of Sykes er a1 (1965). 

In A = 3pu6 + 9p2u' O + 1 8p2u' + (6p3 - 3 1fp2)u' + (9p4 + 63p3)u'* + 120p3u' 

+( 18p5 + 72p4 - 1 6 2 ~ ~ ) ~ ' ~  +( 144p4 - 5 4 0 ~ ~ ) ~ '  

+(3p7+42p6+ 135p5+ 195p4+522p3)u18+(252p5+ l O 4 4 , ~ ~ ) u ' ~  

+(90p7+306p6-414p5- 1714ip4)uZ0 

+(36p7+756p6+2196p5-6162p4)u2' +. . . (triangular). (14) 

The conventional form of the order parameter for the Potts model does not correspond 
directly to either P or M but since Be = 8, any choice of order parameter should lead 
to the same exponent. 

On constructing Pade approximants to the order and to the specific heat, the estimates 
obtained were : 

E' = 0,6+0,1 (tri)  (17) 

= 0.089f0.03 (tri). (18) 

The ranges given denote the spread of the estimates. It seems that the observed spread 
is not due to non-physical singularities since transforming the series did not reduce 
the spread of estimates. If any confluent singularities are present (and this is quite a 
reasonable explanation for the spread of estimates) then the ranges given in (15) to (18) 
may well be rather less than the errors in the exponent estimates. This would explain 
the discrepancy in the estimates. 

On the whole, the series confirm (9) and (10) as well as can be expected from such 
short series. On the square lattice 6 = 15 has been tested for the Potts model (Enting 
1974b), but on the triangular lattice there are not enough high-field polynomials known 
for useful estimates to be obtained. 

Of rather more interest than the actual values of the exponents is the manner in 
which the predictions (9) to (12) were obtained. It is very rarely that the critical exponents 
can be obtained directly from general exponent relations. The relation (7) is essentially 
in the form given by Enting and Gaunt (1974). There is, however, no indication of 
what relation of this type would be most fundamental, fundamental that is in the sense 
that it may be possible to obtain a proof of the relation or of a corresponding inequality. 
Possible alternative forms are 7 ,  = v + i  or 6, = (&$a)/(i-$x). A more complicated 
possibility is that some of the constants in these relations need to be expressed in terms 
of the constants 6, = 15 or q,,, = before the true physical significance becomes 
apparent. 

The support of a Science Research Council grant is gratefully acknowledged. 
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